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In this paper, we consider both Einstein’s theory of general relativity and the teleparallel
gravity (the tetrad theory of gravitation) analogs of the energy-momentum definition of
Møller in order to explicitly evaluate the energy distribution (due to matter and fields
including gravity) associated with a general black hole model which includes several
well-known black holes. To calculate the special cases of energy distribution, here
we consider eight different types of black hole models such as anti-de Sitter Cmetric
with spherical topology, charged regular black hole, conformal scalar dyon black hole,
dyadosphere of a charged black hole, regular black hole, charged topological black
hole, charged massless black hole with a scalar field, and the Schwarzschild-de Sitter
space-time. Our teleparallel gravitational result is also independent of the teleparallel
dimensionless coupling constant, which means that it is valid not only in teleparallel
equivalent of general relativity but also in any teleparallel model. This paper also
sustains (a) the importance of the energy-momentum definitions in the evaluation of the
energy distribution of a given spacetime and (b) the viewpoint of Lessner that the Møller
energy-momentum complex is the powerful concept to calculate energy distribution in
a given space-time.
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1. INTRODUCTION

It is possible to evaluate the energy distribution and momentum by using
various energy-momentum complexes. A large number of formulations of the
gravitational energy, momentum and angular momentum have been given. Some
of them are coordinate independent and other are coordinate-dependent. There
lies a dispute on the importance of non-tensorial energy-momentum complexes
whose physical interpretations have been questioned by a number of physicists,
including Weyl, Pauli and Eddington. Also, there exists an opinion that the energy-
momentum pseudo-tensors are not useful to find meaningful results in a given
geometry. Ever since the Einstein’s energy-momentum complex (Einstein, 1915),
used for calculating energy and momentum in a general relativistic system, many
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attempts have been made to evaluate the energy distribution for a given space-
time (Tolman, 1934; Papapetrou, 1948; Bergmann and Thomson, 1953; Møller,
1958, 1961; Landau and Lifshitz, 1987; Weinberg, 1972; Qadir and Sharif, 1992).
Except for the one which was defined by Møller, these definitions only give mean-
ingful results if the calculations are performed in “Cartesian” coordinates. Møller
constructed an expression which enables one to evaluate energy and momentum
in any coordinate system. Lessner (1996) argued that the Møller prescription is a
powerful concept of energy-momentum in general relativity.

Several examples of particular space-times have been investigated and dif-
ferent energy-momentum formulations are known to give the same energy dis-
tribution for a given space-time (Virbhadra, 1990a,b;, 1995, 1999; Rosen and
Virbhadra, 1993; Chamorro and Virbhadra, 1995, 1996; Aguirregabiria et al.,
1996; Xulu, 2000a; Vagenas, 2003a,b, 2004, 2005, 2006). For instance, in Phys.
Rev. D60-104041 (1999), Virbhadra, using the energy and momentum complexes
of Einstein, Landau-Lifshitz, Papapetrou and Weinberg for a general non-static
spherically symmetric metric of the Kerr-Schild class, showed that all of these
energy-momentum formulations give the same energy distribution as in the
Penrose energy-momentum formulation. Albrow (1973) and Tryon (1973) as-
sumed that the net energy of the universe may be equal to zero. The subject of the
energy-momentum distributions of closed and open universes was initiated by an
interesting work of Cooperstock and Israelit (Cooperstock, 1994; Cooperstock and
Israelit, 1995). They found the zero value of energy for any homogenous isotropic
universe described by a Friedmann-Robertson-Walker metric in the context of gen-
eral relativity. This interesting result influenced some general relativists (Rosen,
1994; Johri et al., 1995; Banerjee and Sen, 1997; Xulu, 2000b; Salti, 2005d).

Recently, the problem of energy-momentum localization has also been con-
sidered in teleparallel gravity (Vargas, 2004; Mikhail et al., 1993; Nashed, 2002).
The authors found that energy-momentum also localize in this alternative theory of
gravitation, and their results agree with some previous papers which were studied
in the general theory of relativity. In Gen. Relat. Gravit. 36, 1255 (2004); Vargas,
using the definitions of Einstein and Landau-Lifshitz in teleparallel gravity, found
that the total energy is zero in Friedmann-Robertson-Walker space-times. Re-
cently, Salt1, Aydogdu and their collaborators (Salti and Havare, 2005; Aydogdu
and Salti, 2005; Aydogdu et al., 2005; Salti and Aydogdu, 2005; Salti, 2005a,b,c;
Aydogdu, 2005) have calculated the energy-momentum density using different
complexes for a given space-time both in general relativity and the teleparallel
theory of gravity and obtained the same results.

The paper is organized as follows. In the next section, we introduce a general
black model, and give some well-known black hole solutions as examples for the
general model. Next, in section 3, we give the energy-momentum definitions of
Møller both in Einstein’s theory of general relativity and the teleparallel gravity.
Section 4 gives us the calculations for the energy distribution. In Section 4, we
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compute the energy of seven special black hole models introduced in Section 1.
Finally, section 5 is devoted to summary and conclusions.

Notations and conventions: c = h = 1, metric signature (−,+,+,+), Greek
indices run from 0 to 3 and, Latin ones from 1 to 3. Throughout this paper, Latin
indices (i, j, . . .) number the vectors, and Greek indices (µ, ν, . . .) represent the
vector components.

2. BLACK HOLE MODELS TO BE CONSIDERED

A general black hole model can be given as

gµνdxµdxν = V (r)dt2 + V (r)−1dr2 + r2[dθ2 + sin2 θdφ2]. (1)

This space-time model can be reduced to some well-known black holes under
special choices of V (r). One can easily find lots of models which are special cases
of our general line-element. Here we give a few of them as examples.

1. Anti-de Sitter C-metric with spherical topology. This black hole model
can be obtained by choosing (Plebanski and Demianski, 1976; Dias and
Lemos, 2003)

V (r) = 1 − 2m

r
+ q2

r2
+ |�|

3
r2. (2)

This model has a cosmological horizon and its charged version has only
one black hole horizon (as opposed to the charged case which has an inner
and an outer black hole horizon).

2. Charged regular black hole. The Reissner-Nordstrom (Ayon-Beato and
Garcia, 1999) solution represents an electrically charged black hole. This
is also special case of the anti-de Sitter C-metric, and it can be defined by
choosing � = 0.

V (r) = 1 − 2m

r
+ q2

r2
(3)

where q and m are the electric charge and respectively the mass of the
black hole.

A solution to the coupled system of the Einstein field and equations
of the nonlinear electrodynamics was recently given by Ayon-Beato and
Garcia (Hayashi and Shirafuji, 1978). This solution represents a regular
black hole with mass m and electric charge q and avoids thus the singular-
ity problem. Also, the metric at large distances behaves as the Reissner-
Nordstrom solution. The usual singularity of the Reissner-Nordstrom solu-
tion, at r = 0, has been smoothed out and now it simply corresponds to the
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origin of the spherical coordinates. The line-element is given by (1) with

V (r) = 1 − 2m

r
+ q2

r2

(
1 − tanh

(
q2

2mr

))
. (4)

If the electric charge vanishes, we reach the Schwarzschild solution. At
large distance (4) resembles the Reissner-Nordstrom solution and can be
written as

V (r) = 1 − 2m

r
+ q2

r2
− q6

12m2r6
+ O

(
1

r6

)
. (5)

3. Conformal scalar dyon black hole. Virbhadra and Parikh (1994) gave
an exact solution of Einstein-Maxwell conformal scalar field equations
which is a black hole solution and is characterized by scalar, charge,
magnetic charge and electric charge. This solution is given by the line
element which is defined by the conditions

V (r) =
(

1 − QCSD

r

)2

(6)

and the conformal scalar field is given by

ψ =
√

3

4π

(
qs

r − QCSD

)
(7)

with qs the scalar charge and where

QCSD =
√

q2
s + q2

e + q2
m (8)

so, this case describes A Conformal Scalar Dyon Black Hole solutions.
4. Dyadosphere of a charged black hole. The event horizon of a charged

black hole is, according to Ruffini (1998) and Preparata et al. (1998),
surrounded by a special region called the dyadosphere where the
electromagnetic field exceeds the Euler-Heisenberg critical value for
electron-positron pair production. The new concept of dyadosphere of an
electromagnetic black hole was introduced by Ruffini to explain gamma
ray bursts. Ruffini defined the dyadosphere as the region just outside the
horizon of a charged black hole whose electromagnetic field strength is
larger than the well-known Heisenberg-Euler critical value

�critical = m2
ec

3

rh
(9)

where me and e denote mass and charge of an electron, respectively. For a
Reissner-Nordstrom black hole, the dyadosphere is defined by the radial
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interval r+ ≤ r ≤ rds where the horizon

r+ = GM

c2
(1 +

√
1 − q2

GM2
) (10)

forms the inner radius of the dyadosphere, while its outer radius is given by

rds =
√

h

cme

GM

c2

mp

me

e

qp

Q

M
√

G
(11)

where M,Q,mp =
√

hc

G
and qc = √

hc are mass, charge parameters,
the Planck mass and the Planck charge, respectively. The total energy
of electron-positron pairs converted from static electric energy and
deposited within the dydosphere is obtained (Ruffini et al., 2003) as

Edya = Q2

2r+

(
1 − r−

rds

) (
1 − r2

+
r2
ds

)
. (12)

De Lorenci et al. (2000) found the correction for the Reissner-Nordstrom
metric from the first contribution of the Euler-Heisenberg Lagrangian
and obtained the following condition for the line-element (1)

V (r) = 1 − 2M

r
+ Q2

r2
− σQ4

5r6
. (13)

By writing σ = 0, we obtain the Reissner-Nordstrom space-time. De
Lorenci et. al. showed that the correction term σQ4

5R6 is of the same order
of magnitude as the Reissner-Nordstrom charge term Q2

2R2 .
5. Regular black hole. Bardeen (Bardeen, 1968; Borde, 1994, 1997) con-

structed a well-known model that represents a regular black hole obeying
the weak energy condition. And it was powerful in shaping the direction
of research on the existence or avoidance of singularities. This model
uses the Reissner-Nordstrom metric as inspiration. The metric expressed
in standard spherical coordinates (t, r, θ, φ) is given by the condition

V 2(r) = 1 − 2mr2

(r2 + e2)3/2
(14)

when e2 < 16
27m2, there is an event horizon. There are values R± of R

such that the region R− < R < R+ contains trapped surfaces. The model
obeys the null convergence, yet it contains no physical singularities. It is
to be noticed that if we take charge e = 0, the case given above reduces
to the Schwarzschild metric.
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6. Charged topological black hole. The line element (Martinez and
Staforelli, 2005) can be given with

V (r) = −�r2

3
−

(
1 + Gm

r2

)2

(15)

where −∞ < t < ∞ and r > 0. The scalar field is

φ =
√

−�

6α

Gµ

r + Gµ
(16)

with α > 0 (the scalar field is real provided α > 0) and the only non-zero
component of electromagnetic field is

At = −qr−1. (17)

The integration constants q and µ are not independent. They are related as

q2 = −Gµ2

(
1 + 2π�G

9α

)
. (18)

The mass M, and the electric charge Q are given by

M = σ

4π
µ, Q = σ

4π
q (19)

respectively, where σ denotes the area of 
.
7. Charged massless black hole with a scalar field. This model can be

obtained from the charged topological black hole solution by taking
m = 0 (Martinez and Staforelli, 2005),

V (r) = −�r2

3
− 1. (20)

8. The Schwarzschild-de Sitter space-time.

V (r) = 1 − 2M

r
− r2

l2
(21)

here M is the mass of the black hole, and l2 is related to the positive
cosmological constant. The space-time model has more than one horizon
if 0 < χ < 1

27 where χ = M2

l2 .
The black hole horizon rh and the cosmological horizon rc are

located (Shankaranarayanan, 2003), respectively, at

rh = 2M√
3χ

cos
π + �

3
, (22)

rc = 2M√
3χ

cos
π − �

3
(23)
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where

� = arccos(3
√

3χ ). (24)

3. THE ENERGY FORMULATION OF MØLLER

3.1. In General Relativity

The energy and/or momentum complex of Møller (Tolman, 1934; Papapetrou,
1948; Bergmann and Thomson, 1953; Møller, 1958, 1961; Landau and Lifshitz,
1987; Weinberg, 1972; Qadir and Sharif, 1992) in general relativity is given by

Mν
µ = 1

8π
χνα

µ,α (25)

satisfying the local conservation laws:

∂Mν
µ

∂xν
= 0 (26)

where the antisymmetric super-potential χνα
µ is

χνα
µ = √−g[gµβ,γ − gµγ,β]gνγ gαβ. (27)

The locally conserved energy-momentum complex Mν
µ contains contributions

from the matter, non-gravitational and gravitational fields. M0
0 is the energy density

and M0
a are the momentum density components. The momentum four-vector of

Møller is given by

Pµ =
∫∫∫

M0
µdxdydz. (28)

Using Gauss’s theorem, this definition transforms into

Pµ = 1

8π

∫∫
χ0a

µ µαdS (29)

where µa (where a = 1, 2, 3) is the outward unit normal vector over the infinites-
imal surface element dS. Pi give momentum components P1, P2, P3 and P0 gives
the energy.

3.2. In the Tetrad Theory of Gravitation

The teleparallel theory of gravity (the tetrad theory of gravitation) is an
alternative approach to gravitation and corresponds to a gauge theory for the
translation group based on Weitzenböck geometry (Weitzenböck, 1923). In the
theory of teleparallel gravity, gravitation is attributed to torsion (Hayashi and
Shirafuji, 1978), which plays the role of a force (de Andrade and Pereira, 1997), and
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the curvature tensor vanishes identically. The essential field is acted by a nontrivial
tetrad field, which gives rise to the metric as a by-product. The translational gauge
potentials appear as the nontrivial item of the tetrad field, so induces on space-time
a teleparallel structure which is directly related to the presence of the gravitational
field. The interesting place of teleparallel theory is that, due to its gauge structure,
it can reveal a more appropriate approach to consider some specific problem.
This is the situation, for example, in the energy and momentum problem, which
becomes more transparent.

Møller modified general relativity by constructing a new field theory in
teleparallel space. The aim of this theory was to overcome the problem of the
energy-momentum complex that appears in Riemannian Space (Møller, 1978,
1961). The field equations in this new theory were derived from a Lagrangian
which is not invariant under local tetrad rotation. Saez (1983) generalized Møller
theory into a scalar tetrad theory of gravitation. Meyer (1982) showed that Møller
theory is a special case of Poincare gauge theory (Hayashi and Shirafuji, 1980a,b;
Hehl et al., 1980).

In teleparallel gravity, the superpotential of Møller is given by Mikhail et al.
(Vargas, 2004; Mikhail et al., 1993; Nashed, 2002) as

Uνβ
µ = (−g)1/2

2κ
P τνβ

χρσ

[
�ρgσχgµτ − λgτµξχρσ − (1 − 2λ)gτµξσρχ

]
(30)

where ξαβµ = hiαhi
β;µ is the con-torsion tensor and hi

µ is the tetrad field and
defined uniquely by gαβ = hα

i h
β

j ηij (here ηij is the Minkowski space-time). κ is
the Einstein constant and λ is free-dimensionless coupling parameter of teleparallel
gravity. For the teleparallel equivalent of general relativity, there is a specific choice
of this constant.

�ρ is the basic vector field given by

�µ = ξρ
µρ (31)

and P τνβ
χρσ can be found by

P τνβ
χρσ = δν

ρg
νβ
ρσ + δτ

ρgνβ
σχ − δτ

σ gνβ
χρ (32)

with gνβ
ρσ being a tensor defined by

gνβ
ρσ = δν

ρδ
β
σ − δν

σ δβ
ρ . (33)

The energy-momentum density is defined by


β
α = U

βλ

α,λ (34)
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where comma denotes ordinary differentiation. The energy is expressed by the
surface integral;

E = lim
r→∞

∫
r = constant

U
0ζ

0 ηζ dS (35)

where ηζ is the unit three-vector normal to surface element dS.

4. CALCULATIONS

In this part of the study, we will calculate the energy distribution (due to
matter and fields including gravity) for a general metric that includes seven black
hole models introduced in section 1.

4.1. In Genaral Relativity

The matrix of the gµν is defined by
⎛
⎜⎜⎜⎝

V (r) 0 0 0

0 − 1
V (r) 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ

⎞
⎟⎟⎟⎠ (36)

and its inverse gµν is
⎛
⎜⎜⎜⎝

1
V (r) 0 0 0

0 −V (r) 0 0

0 0 − 1
r2 0

0 0 0 − 1
r2 sin2 θ

⎞
⎟⎟⎟⎠ (37)

For the line-element (1), under consideration, we calculate

χ01
0 = Vrr

2 sin θ

2
√

V
(38)

which is the only required component of χνα
µ for our purpose. Here, the index r

indicates derivative with respect to r.

4.2. In Teleparallel Gravity

The general form of the tetrad, h
µ

i , having spherical symmetry was given by
Robertson (1932). In the Cartesian form it can be written as

h0
0 = iA, h0

a = Cxa, hα
0 = iDxα, hα

a = Bδα
a + Exaxα + εaαβFxβ (39)
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where A, B, C, D, E, and F are functions of t and r = √
xaxa , and the zeroth

vector h
µ

0 has the factor i2 = −1 to preserve Lorentz signature and the tetrad of
Minkowski space-time is h

µ
a = diag(i, δα

a ) where (a=1,2,3).
Using the general coordinate transformation

haµ = ∂Xν ′

∂Xµ haν (40)

where {Xµ} and {Xν ′ } are, respectively, the isotropic and Schwarzschild co-
ordinates (t, r, θ, φ). In the spherical, static and isotropic coordinate system
X1 = r sin θ cos φ, X2 = r sin θ sin φ, X3 = r cos θ . We obtain the tetrad compo-
nents as ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i√
V (r)

0 0 0

0
√

V (r) sin θ cos φ
1

r
cos θ cos φ − sin φ

r sin θ

0
√

V (r) sin θ sin φ
1

r
cos θ sin φ

cos φ

r sin θ

0
√

V (r) cos θ −1

r
sin θ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(41)

where i2 = −1. Hence, the required non-vanishing component of Uνβ
µ is (Wolfram

Research, 2003; TCI Software Research, 1998)

U 01
0 = Vrr

2 sin θ

2κ
√

V
. (42)

5. SOLUTIONS FOR SPECIAL BLACK HOLE MODELS

In this section, we consider equations (38) and (42) with equations (29)
and (35) to find exact solutions for the energy distributions associated with the
aforementioned black hole models.

1. Anti-de Sitter C-metric with spherical topology. In this black hole solution,
the energy distribution is calculated as

E(r) = m − g2

r
+ 1

3 |�|r2√
1 − 2m

r
+ g2

r
+ 1

3 |�|r2
(43)

and without cosmological constant the energy becomes the following form

lim
�→0

E(r) = m − g2

r√
1 − 2m

r
+ g2

r

, (44)
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at a large distances

lim
r→∞ E(r) = m. (45)

According to the Cooperstock hypothesis (Cooperstock and Richardson,
1992), the energy is confined to the region of non-vanishing energy-
momentum tensor of matter and all non-gravitational fields.

2. Charged regular black hole. By using energy integrals and writing κ = 8π

in the second one defined in the teleparallel gravity, the energy is obtained
both in general relativity and the teleparallel gravity as

E(r) = m

(
1 − tanh

(
q2

2mr

))
− q2

2r

(
1 − tanh2

(
q2

2mr

))
(46)

at a large distances

E(r) = m − q2

r2
+ q6

6m2r3
− q10

40m4r5
+ O

(
1

r6

)
. (47)

For the same black hole metric, by using the general relativity version
of Møller energy, Radinschi (Radinschi, 2000, 2001; Yang and Radin-
schi, 2003) found that the energy is E = m(1 − tanh( q2

2mr
)) − q2

2r
(1 −

tanh2( q2

2mr
)). Hence, we found that the teleparallel Møller’s energy is

the same as the general relativistic one. This energy is an acceptable
one, because the black hole under consideration is charged and our result
also sustains the viewpoint of Lassner (1990) that the Møller energy-
momentum complex is a powerful concept of energy and momentum.
The energy distribution of a charged regular black hole reduces to m as
r → ∞, corresponding to

lim
r→∞ E(r) = m. (48)

3. Conformal scalar dyon black hole. The total energy distribution of a
conformal scalar dyon black hole is found both in general relativity and
the teleparallel gravity as

E(r) = QCSD

(
1 − QCSD

r

)
. (49)

In literature, Radinschi (Radinschi, 2000, 2001; Yang and Radinschi,
2003), the energy distribution of a conformal scalar dyon black hole was
found E = QCSD(1 − QCSD

r
). Our result is exactly the same as Radinschi’s

result. Hence, we found that (a) our result is an acceptable one, because the
black hole under consideration is charged and (b) the general relativistic
result and the tele-parallel gravitational one agree with each other. The
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energy distribution of a conformal scalar dyon black hole reduces to QCSD

as r → ∞, corresponding to

lim
r→∞ E(r) = QCSD. (50)

Hence, the energy(due to matter plus fields) is given by parameter QCSD

which is the charge for this metric.
4. Dyadosphere of a charged black hole. The energy of the dyadosphere of

a charged black hole is obtained as

E(r) = M − Q2

r
+ σQ4

5r5
. (51)

In the previous paper Xulu (2003), using the Einstein, Landau-Lifshitz,
Papapetrou and Weinberg prescriptions found that the energy associated
with the dyadosphere of a charged black hole is

EE = ELL = EP = EW = M − Q2

2r
+ σQ4

10r5
. (52)

It is obvious that in the dyadosphere region (where r is small) the lats term
of energy definition plays a very important role. As expected, σ = 0 gives
the energy distribution

EE = ELL = EP = EW = M − Q2

2r
, (53)

EMoller = M − Q2

r
(54)

which is for the Reissner-Nordström metric. At the large distances, our
results and Xulu’s one agree with each other.

lim
r→∞ E(r) = M. (55)

5. Regular black hole. For this special case, we have the following energy

E(r) = mr3(r2 − 2e2)(r2 + e2)−5/2 (56)

which can be written as

E(r) = m

(
1 − 9e2

2r2
+ 75e4

8r4
+ O

(
1

r6

))
(57)

at a large distances (r → ∞)

lim
r→∞ E(r) = m. (58)

The energy is found the same as the one calculated using the general
relativity version of the Møller definition by Sharif (2004).
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6. Charged topological black hole. We find the following energy

E(r) =
Gm
r

(
1 + Gm

r2

) − �
3 r3√

−�r2

3 − (
1 + Gm

r2

)2
. (59)

7. Charged massless black hole with a scalar Field.

E(r) = −
(

−�r2

3

)− 1
2 �

3
r3. (60)

8. The Schwarzschild-de Sitter space-time. We have the following energy
distribution which depends on the mass of the Schwarzschild-de Sitter
black hole.

E(r) = M + r3

l2
. (61)

In the special case where there is no cosmological constant, we obtain the
energy distribution as

lim
l→∞

E(r) = M. (62)

6. SUMMARY AND DISCUSSIONS

Møller showed that a tetrad description of a gravitational field equation
allows a more satisfactory treatment of the energy-momentum complex than does
general relativity. Therefore, we have also applied the super-potential method by
Mikhail et al. (Vargas, 2004; Mikhail et al., 1993; Nashed, 2002) to calculate the
energy of the central gravitating body.

Recently, one of us (Salti and Havare, 2005; Aydogdu and Salti, 2005;
Aydogdu et al., 2005; Salti and Aydogdu, 2005; Salti, 2005a,b,c; Aydogdu, 2005)
has considered the Møller energy-momentum definition in both general relativity
and teleparallel gravity for the viscous Kasner-type metric and calculated the
same energy. Also the result of that paper agrees with some of the previous papers
by Cooperstock and Israelit, Rosen, Johri et al., Banerjee-Sen in general relativity
and by Vargas in teleparallel gravity.

In this paper, in order to investigate the energy associated with a general
black hole model with some of its special cases, we considered the Møller
energy-momentum formulation in both general relativity and teleparallel gravity.
We obtained that the energy distribution is the same in both of these different
gravitation theories. It is also independent of the teleparallel dimensionless
coupling constant, which means that it is valid not only in teleparallel equivalent
of general relativity but also in any teleparallel model.
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In the special cases, we obtained eight different black hole models, such
as antide Sitter C-metric with spherical topology, charged regular black hole,
conformal scalar dyon black hole, dyadosphere of a charged black hole, regular
black hole, charged topological black hole, charged massless black hole with
a scalar field, and the Schwarzschild-de Sitter space-time. For these black hole
models, we obtained energy distribution (due to matter and fields including gravity)
associated with them and also considered some limits of those results.

Finally, this paper sustains (a) the importance of the energy-momentum defi-
nitions in the evaluation of the energy distribution of a given spacetime and (b) the
viewpoint of Lessner that the Møller energy-momentum complex is the powerful
concept to calculate energy distribution in a given space-time.
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